skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perras, Frédéric A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 30, 2026
  2. Free, publicly-accessible full text available November 23, 2025
  3. Abstract Carbon–carbon bond cleavage reactions, adapted to deconstruct aliphatic hydrocarbon polymers and recover the intrinsic energy and carbon value in plastic waste, have typically been catalysed by metal nanoparticles or air-sensitive organometallics. Metal oxides that serve as supports for these catalysts are typically considered to be inert. Here we show that Earth-abundant, non-reducible zirconia catalyses the hydrogenolysis of polyolefins with activity rivalling that of precious metal nanoparticles. To harness this unusual reactivity, our catalytic architecture localizes ultrasmall amorphous zirconia nanoparticles between two fused platelets of mesoporous silica. Macromolecules translocate from bulk through radial mesopores to the highly active zirconia particles, where the chains undergo selective hydrogenolytic cleavage into a narrow, C 18 -centred distribution. Calculations indicated that C–H bond heterolysis across a Zr–O bond of a Zr(O) 2 adatom model for unsaturated surface sites gives a zirconium hydrocarbyl, which cleaves a C–C bond via β-alkyl elimination. 
    more » « less
  4. Abstract The silylium‐like surface species [iPr3Si][(RFO)3Al−OSi≡)] activates (N^N)Pd(CH3)Cl (N^N=Ar−N=CMeMeC=N−Ar, Ar=2,6‐bis(diphenylmethyl)‐4‐methylbenzene) by chloride ion abstraction to form [(N^N)Pd−CH3][(RFO)3Al−OSi≡)] (1). A combination of FTIR, solid‐state NMR spectroscopy, and reactions with CO or vinyl chloride establish that1shows similar reactivity patterns as (N^N)Pd(CH3)Cl activated with Na[B(ArF)4]. Multinuclear13C{27Al} RESPDOR and1H{19F} S‐REDOR experiments are consistent with a weakly coordinated ion‐pair between (N^N)Pd−CH3+and [(RFO)3Al−OSi≡)].1catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd−CH3]+in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions.1produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate. 
    more » « less